If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4h^2+2h-10=0
a = 4; b = 2; c = -10;
Δ = b2-4ac
Δ = 22-4·4·(-10)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{41}}{2*4}=\frac{-2-2\sqrt{41}}{8} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{41}}{2*4}=\frac{-2+2\sqrt{41}}{8} $
| -3(t-5)=-9 | | 8+6x+7x=21 | | 6y-7=3y-5 | | 12b+9b=12b+11 | | 8+10r=98 | | (x-1)+(x+18)+3x+(x+10)+2x+x=360 | | d+38/6=9 | | -16=-3+7(d+6) | | 3v+9=8v-6 | | 6a=12=2(3a | | (3x-13)(7x+18)=0 | | F(x)=200+5x | | 12=d+6 | | x-1.6=x+6 | | 5p+3=7p-1 | | 5c-13=-3 | | 18=x/6-3 | | 10x-54=3x+37 | | X3x5=x | | 6(y+2)+y=2(y+4)-8 | | 6m-4-3m=2 | | 2016=504+126x | | -7.17=-5.37+-h | | 4+x=-1/2(x-1)+1/2 | | 3(z-4)=72+4 | | 65x+65=2 | | 19z-8z+18=4 | | 2x8x=84 | | 9(k-91)=54 | | -4+3p=3p-6 | | 3n+10=3 | | 12+2k=52 |